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ABSTRACT
In this paper we consider the analysis of stochastic dynamical systems thatinvolve multiplicative (bilinear) noise processes. After defining the sys-tems of interest, we consider the evolution of the moments of such systems,
the question of stochastic stability, and estimation for bilinear stochas-tic systems. Both exact and approximate methods of analysis are introduced,and, in particular,the uses of Lie-theoretic concepts and harmonic.analysis are discussed.

I. INTRODUCTION
Recently, a great deal of effort has gone into developing a detailedtheory for a class of nonlinea - systems that possesses a great deal ofstructure -- the class of bili iear systems. The mathematical tools behindbilinear system analysis include not only many of the vector space tech-niques that are so valuable in linear system theory but also a number oftools drawn from the theories Df Lie groups and differential geometry. Itis the purpose of this paper t describe the sevral mathematical techniquethat have been developed for t.de analysis of bilinear stochastic systems.The reader is-recered to [1J-7] for detailed descriptions of some ofthese techniques and for further references.

II. STOCHASTIC BILINEAR SYSTEMSWe consider the dynamical model
NS= [A + u i ( t ) Ax(t) 

(1)
where the A. are given n x n matrices, the u. are scalar inputs, and x is
either an n-vector or an n x n matrix. Let .bE the Lie algebra generatedby A0 1 ... ,A -- i.e. the smallest subspace of n x n matrices containing
A0 , ...- ,A and closed under the commutator product [P,Q] =PQ-QP--and let
G be the Lie group associated with - - i.e. t e smallest group (undermatrix multiplication) containing exp (L) V L E T. It is well known thatfor 3iecewise continuous u., we have x(t) E G xt0), t. If the u. are
white noise processes, we have that x E Gx(0) hclds almost surely for thesolution to the Ito equation

dx(t) IA i 2 R..(t)AiAj]dt + Aidv.(t)J x(t) (2)ij=l 1J i=1
where v is a Bro ,niani motion wiih r:[iv(t)dv' (t)] - , ismoot-her than white noise - - f,jr Ji l:-trace if 41 .. ic ,
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d (t) = F(t) (t)dt + G(t)dw(t) + a(t)dt, u(t) = H(t)((t) (3)

where w is a Brownian motion -- we needn't include the correction term
contained in (2). In this case x is not a Markov process, but the pair
(x,E) is; however, when we regard (x, ) as the state, the system (1),(3)
involves products of state variables. As we shall see, the analysis in
this case is more difficult than in the white noise case.

III. MOMENT EVOLUTION EQUATIONS

3.1 Systems Driven by White Noise
In this subsection we present moment equations derived by Brockett

[4]. Consider (2) where, for simplicity, we assume that R(t) = I. Recall
that the number of linearly independent homogeneous polynomials of degree

p in n variables (i.e. f(cx ,...,cx ) = c f(x1,...,x )) is

n+p-1
N(n,p) ( (4)

We choose a basis for this space of polynomials consisting of the elements

p -p .. x ... x n pi p, i 0 (5)1 2 n i=

If we denote the vector of these elements (ordered lexicographically) by

x , [ then IIxI = Iix ='I, where lxi2 = x'x. It is clear that if x

satisfies x = Ax, then x.p ] satisfies x[P] = A[]x[  We regard this as

the definition of Ap , which is closely related to Kronecker sum matrices
[10],[11].

The Stratonovich analog of (2) is

N
dx(t) = [A dt + A.dv. (t)]x(t) (6)

i 1 1i=l

Since Stratonovich equations obey the rules of ordinary calculus, we obtain

dx (t) =[A0 [P]dt + A. dv.(t) x (t) (7)
i= i

Using the moment equations for Stratonovich equations, we have an evolution
for the pth moments o:" (2):

N
d [p] [p p 2 [pE(x (t.) = A + 1 (A. [ tE(x (t)) (8)dt 02 i

3.2 Systems Driven br Colored Eoi~c: Exact Expre :i _cr:

Definition 1: We associate with any Lie algebra 9 its derived series

(0)

(I (])~~~)  rI " - , .

.? is abelian if '( ) and is solvable if ('' = t0) for some n.
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Theorem 1: A matrix Lie algebra 0 is solvable if and only if there
-1

exists a nonsingular matrix P (possibly complex-valued) such that 
PAP is

upper triangular (zero below diagonal) for all A 
5 .

~roof: See 13] .

We now consider (1) where we assume that u is a zero mean Gaussian

random process with E[u(t)u'(s)] = P(t,s). Let .9be the Lie algebra gene-

rated by AO,A1,.--,AN. We claim that one can construct closed form expre-

ssions for E[x (t)] if .9is solvable. Assuming that L is solvable (and

that x(0) is independent of u), we can obtain a closed form expression for

u , the state transition matrix for (1), as a function of u. First we find

the matrix P as in Theorem 1 such that each B. . PA P 1 is upper triangular.

Then we can solve the equation

N

'fu(t,0) = [B + B.. (t)Piu(t,0), u (0,0) = I (10)

i=1

by straightforward calculations (see the example in Subsection 4.2), and we

compute

x(t) = pP T (t,0)P x(0) (11)
u

and T involves nothing more complicated than exponentials of integrals of

components of u, polynomials in u, and various combinations, products, and

integrals of such-que~atities. Since u is Gaussian, we can evaluate the

expectations of such quantities in closed form (see Subsection 4.2) and

can thus obtain a closed form expression for EJx(t)]. We can also obtain

closed form expressions for E[x [ '] (t)], as x P consists of the same types

of functionals of u (see [7]).

3.3 Systems Driven by Colored Noise--Approximate Analysis

Conside2 the system (1) where u is given by (3). In this section we

describe an i.pproximate method that can be used for moment analysis 
if L

is not solvalle. This approach is based on the truncation of the cummulants

of a random process [14] and can be used for arbitrary nonlinear systems,

although it -.s particularly well-suited to systems with polynomial 
non-

linearities. We will illustrate the approach by example and refer the

reader to [1, [2], and [9] for more detailed discussions.

Conside: the scalar example

dx t) = ax (t)dt + x(t) dw(t) (12)

where E[dw2(t.)] = dt. We compute [12]

2
hl(t) =c am2 t ) , m2 = 2am3(t) + G2m2 (t )

m3 (t) = 3uam(t) + 31 m3(t)

where m. = Etxi).

From these equations it is clear that any attempt to 
study the properties

of (13) must involve a truncation of the infinite 
set of coupled equations.

As discussed in [1] and [14], the direct truncation method -- setting

to zero all moments greater than some given order --. can cause difficulties,

but.the truncation of the cumulants -- the coefficients of the Taylor

series expansion of the logarithm of the characteristic function 
-- is quite

reasonable (for instance, only the first two cumulants are nonzero 
for



Gaussian densities). By comparing terms in the series expansions for the
characteristic function, one can compute relationships between the cumu-
lants and moments. For instance, the fourth 7umulant satisfies

2 2
k=m 4 -3m2 - 4mlm3+ 12mlm2- 6m (14)

Thus if we assume k4 
= 0 and use (14) to express m4 in terms of m., i < 3,

44 1
we can use this approximation in the moment e luations (13).

Finally, we note that the cumulants tech :ique can be used to design
suboptimal estimators for bilinear systems (s e [2])

IV. STOCHASTIC STABILI' Y
A problem of considerable theoretical an practical interest is the

question of the stability of linear systems c ntaining multiplicative
noise processes. As discussed in [7.] and [8], :uch systems often arise in
linear feedback systems in which the actuator, sensor, and feedback gains
may be stochastic in nature. In this case, a model such as (1) arises, in
which.the u. represent the random elements in the system.

Definition 2: A vector random process x is pth order stable if

E[x (t)] is bounded for all t, and x is pth order asymptotically stable
if

lim E[x (t) ] 0 (15)

The systems (1),(3) and (2) are pth order (asymptotically) stable if the
solution x is pth order (asymptotically) stable for all initial conditioS
x(O) that are independent of 5 (in the (1),(3) case) or the.v (in (2)) and

such that E[x [P](0)] < .

4.1 The White Noise Case
Consider the system (2). Using (8), we have the following.

Theorem 2: The system (2) with R=I is pth order asymptotically stable
if and only if the matrix

[P] 1 N [p]2D = A + - (A. ) (16)
P 2 1 1

has all its eigenvalues in the left-half plane (Re(A)< 0). The system is
pth order stable if D has all its eigenvalues in Re(A)< 0 and if the

p
eigenvalues with real parts = 0 have all higher order residues = 0 (i.e.

At D t
there are no te terms in e with Re(A) = 0; see [15, p.55]).

For exa.mples of this result, we refer the reader to [7].

4.2. The Colored ioise Case
We have seen in Subsection 3.2 that we can obtain closed formrnoment

expr.!ssions for systems of the forin given in (i) whf:n u i a (; zit:;i.l1
colored noise process and Q' is r;olvable. We can us t)hse exrusi, nn to
obtain stochastic stability criteria. We illustrate these idea: by hieans
of an example (see [7] for other examples).

Example 1: Consider the system

[(t) = [A0 + Al 1 (t) + A2 (t)]x(t) (17)
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A0 = e , A1  , A2  (18)1 1 0 0

with F .:ero mean and

E I (t) (t+T [a 2 ee 1 + 2 i=l,2 (19)

E [ (t) (t+T) 2 1 e 2e. (20)

In this case L is solvable, and defining y =Px , with0 1
P = (21)

1 -1
we have t

1(t,0) Tl(tls)r2(s,0) [a + (1(s)]ds

y(t) jI 0it)T( s) [ 1 1  (22)

o0 2 (t,O)
t2

i(tl,t 2 )  ep (t 2 -t) + i (s)ds (23)

t1

Some lengthy but straightforward calculations yield "the following neces-
sary and sufficient conditio for first order asymptotic stability

1 ( 2  t (24)
2 k 2

and the system is first order stable if equality holds in (24).

V. ESTIMATION FOR BILINEAR SYSTEMS
There have been a number of results obtained on estimation for bili-

near systems. In this section we illustrate two classes of results. The
first of thesd involves estimation on nilpotent Lie groups. For such sys-
tems one can obtain finite dimensional optimal nonlinear filters [3], and
we illustrate the result for the 3-dimensional case in Subsection 5.1.
An approximate technique based on the use of harmonic analysis on compact
Lie groups is illustrated in Subsection 5.2. For more detailed discussions
of bilinear estimation, we refer the reader to [2],[31,[5], and (6].

5.1 Estimation on Nilpotent Lie Groups

Definition 3: A Lie algebra L is cal led iF !If!. I,: I ti h -h ,, ,..:',
" -of Lie algebras

0

L n+1l = [, Ln] = {[A,B]JA c L , B E Ln, n>_ o (25)

terminates in zero. Note that abelian => nilpotent => solvable, but none
of the reverse implications hold in general.



Consider the system (1) with A = 0, N=3, and

0 1 0 0 0 1 0 0= 0 0
A 0 0 , A2 0 0 0 , A3 O 0 1 (26)

0..o 0 , . 0 0 0

It is easy to see that these matrices generate a nilpotent Lie algebra.
Also, suppose that u satisfies (3) with (for simplicity) H = I and a 0,
and let x be the 3x3 transition matrix for (1) (i.e. x(0) = I).Then

t t t

1 J()da 2 (ad+ f I () )da 2do10 0 0

x(t) - 0 1 3 ()da (27)

0
0 0 1

Suppose we have the linear observations

dz(t) C(t) (t)dt + R / 2 (t)dv(t) (28)
where v is a Brownian motion process and R > 0. Then the conditional
mean, x(tjt) = E(x(t) z(s), 0 < s < t), can be generated by a finitedimensional nonlinear filter as follows (see [2],[3] for details): let

P( ,o2',t) = E[((a) - (it)) ((o2)- (2 t))' z(s),0s<t

Then P(o,t,t) = k(t,Oa)(t), and is nonrandom, where

= + IF' +GG -
-C'R CI (30)

-1
K' (t,a) -[F' (t) + (Gt)G(t)G' (t)]' (t,o) ; K(O,O) =I (31)
Consider the additional state variables

(t) = (t)32)

S(t) = K3 (tOl)ei'dj ((t)-[F' (t) + I (t)G(t)G' (t)]a(t) (33)

* -1

e(t) = [ele 3 ]r(t)-[F' (t) + (t)Gt)' (t)]S(t) (34)

where i(0) = a(0) = (0) = 0, K. in; tVe jth row 'f K, and, i t.
ith ui4it vector in R . We impI ; ,i , Jit. , t j Itt r t ,, ( , I ,.
(34), and then
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S1 n (tlt T12(tit) + -(tit)

x(tjt) = 0 1 13 (tlt) (35)

0 0 1

where Y(010) - 0 and

t

dy(tjt) = tIt 3 + 13t ,t)d t

(36)

+ ['(tt)+(tlt)] (t)C'(t)Rl (t)[dz(t)-C(t)l(tlt)dt]

The key to this result is the fact that K is a state transition matrix with
a finite-dimensional representation (31). Also, as mentioned earlier,
this result can be extended to arbitrary nilpotent Lie groups, some solvabl
Lie groups, and to other nonlinear systems. The key to these extensions
is the fact that products and transposes of weighting patterns with finite-
dimensional realizations also have finite-dimensional realizations (see
[31).

5.2 The Use of Harmonic Analysis in Suboptimal Filter Design
In-this-subsection we illustrate the use of harmonic analysis in bi-

linear estimation by studying a phase tracking problem with the aid of
Fourier series analysis. For extensions of these results to other problems,
including attitude estimation with the aid of spherical harmonic analysis,
we refer the reader to [2]. Suppose we receive the signal z defined by

1/2
dz(t) = [sine(t)]dt + r / 2 (t)dw(t) (37)

1/2
d(t) = w dt + q (t)dv(t) (38)

where v and w are independent standard Brownian motions independent of the
random initial phase e(0). We desire to track the signal phase, 6 mod 2W.
As discussed in [6], a useful estimation criterion is to choose 0(t) to
minimize E[l-cos(o(t)-b(t)) z(s), < a < t].

Putting the problem into Cartesian coordinates by defining xl = sinO,

x2 = cose, we have the bilinear equations

dxl(t) -q(t)dt/2 (wdt+q (t)dv(t)) x

1/2dx2 (t) -(c dt+q (t)dv(t)) -q(t)dt/2 x 2(t

dz(t) = x1 (t)dt + r 1 / 2 (t)dw(t) (40)

and the optimal estimate^is

-1l x (tlt)
(t) = tan --- (41)

x2 (t t)

We note that xl s ;nO or r :on() A. mlnm 'nn r .. . , .. i.w if'

-Et~PRODU is OO_.__
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-2 -2
x2 under the constraint xI + x2 = i.

To solve this problem, we expand the conditiornal probability density
for 6(t) given {z(s), 0 < s < t} in a Fourier series. The coefficients are

c1 -inO (t)c (t) = Elz(s), 0<s<t] = b (t)-ia (t) (42)n 2n

We then have the coupled equations [6]

2
dc - [inw + -q] c dtn c 2 n

(c -c ) dz + 27I (c )dt,
+ n-1 n+ + 2 I (c m 1 (43)

2i nm 1 r

See [6] for a discussion of the structure of the optimal filter. Note that
x2 - ixl = 2 cl, and thus we need only compute c1 to determine 6; however,

c2 couples into cl, c3 into c2, etc. Thus we need to approximate the
optimal filter to obtain an implementable system. One approach considered
in [6] is to make an approximation based on the assumption that the condi-
tional density is a "folded normal density," the circular analog of the
normal density. The coefficients of such a density depend on only two
parameters

2
2c = e-n y/2 e- int2• n =-e e -44-

and c2 = 873Ic 11
2c1

2 . Using this relationship as an Approximation in

(44), we obtain an equation for cl that is uncoupled from the other
coefficients. We refer the reader to [6] for simulation results that in-
dicate that this filter performs better than the optiimal phase-lock loop.
In adition, directly analogous results using spherical harmonics have
been obtained in [2] for the estimation of processes on the sphere.

VI. CONCLUSIONS
In this paper we have described a number of techniques for the ana-

lysis of bilinear stochastic systems. As can be seen from our results and,
from those in the references, this is a class of systems that is rich in
both structure and practical applications.
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